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A non-classic optimality condition in the problem of control by

boundary value conditions of a semi-linear hyperbolic system
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A non-classic optimality condition of variational maximum principle type
is presented for optimal control problems by initial-boundary conditions of
first-order hyperbolic systems. The optimal starting or boundary control
provides the maximum in special problems of control by initial values of
a system of ordinary differential equations. The optimality condition is
illustrated by an example.
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1. Introduction

Problems of optimal control by initial-boundary conditions of first-order hyperbolic
systems arise in mathematical modelling of generation and spreading of waves,
processes of chemical technology and population dynamics, etc.

In [3,4] the validity of the differential (linearized) maximum principle as
a necessary condition for optimality of boundary controls in first-order hyperbolic
systems has been proved. The author proved [1] the maximum principle for the case
where the boundary value conditions for hyperbolic equations are being determined
by the controlled systems of ordinary differential equations. The characteristic
property of a general control by boundary value conditions problem is the fact that
in this system there are no optimality conditions similar to the classical (pointwise)
maximum principle. Such a peculiarity is emphasized, for instance, in [7], where
a counterexample had been constructed for the simplest hyperbolic systems with two
orthogonal families of characteristics.

In the present article, the analysis of an increment formula for the cost functional
leads to a non-classical optimality condition. The optimal starting or boundary
control provides the maximum in special problems of control by initial values of
a system of ordinary differential equations. This optimality condition is stronger
than the differential maximum principle. The obtained result is similar, in its form,
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to the variational maximum principle proved in [6] for hyperbolic equations with

distributed controls. The optimality condition is proved in terms of the study of

perturbation of solution, caused by usual needle variation of control. The concluding

part deals with an example which illustrates the optimality condition.

2. Problem statement

We consider an optimal control problem for the following system of semi-linear

hyperbolic equations

@x

@t
þ Aðs, tÞ

@x

@s
¼ fðx, s, tÞ: ð1Þ

The problem is considered in the rectangle P¼S�T, S¼ [s0, s1], T¼ [t0, t1]. Here

x¼ x(s, t) is an n-dimensional vector-function of state variables, A¼A (s, t) is n� n

— matrix, (s, t)2P.
The system (1) is written in invariant form, i.e. A is a diagonal matrix.

In addition, we assume that the diagonal elements ai (s, t) of the matrix of coefficients

possess constant signs in the rectangle P:

aiðs, tÞ5 0, i ¼ 1, 2, . . . ,m1;

aiðs, tÞ ¼ 0, i ¼ m1 þ 1,m1 þ 2, . . . ,m2 � 1;

aiðs, tÞ4 0, i ¼ m2,m2 þ 1, . . . , n:

Respectively, the state vector x¼ x(s, t) contains two subvectors

x� ¼ ðx1,x2, . . . , xm1
Þ, xþ ¼ ðxm2

, xm2þ1, . . . , xnÞ,

which correspond to negative and positive diagonal elements of the matrix of

coefficients.
Let the controlled initial-boundary conditions for system (1) be given in the

following form:

xðs, t0Þ ¼ pðuðsÞ, sÞ, s 2 S; ð2Þ

xþðs0, tÞ ¼ gð1Þðuð1ÞðtÞ, tÞ,

x�ðs1, tÞ ¼ gð2Þðuð2ÞðtÞ, tÞ, t 2 T: ð3Þ

Control functions u¼ u(s), u(1)¼ u(1)(t) and u(2)¼ u(2)(t) are bounded and measurable

on segments S and T, respectively, and almost everywhere on these segments the

following conditions are satisfied:

uðsÞ 2 U � E r; uð1Þ 2 Uð1Þ � E r1;

uð2Þ 2 Uð2Þ � E r2 : ð4Þ
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The problem is to minimize the functional

JðuÞ ¼

Z
S

’ðxðs, t1Þ, sÞ dsþ

Z
T

’0ðx
�ðs0, tÞ, tÞ½

þ ’1ðx
þðs1, tÞ, tÞ�dtþ

Z
P

Z
�ðx, s, tÞ ds dt:

ð5Þ

In order to simplify our notation we introduce the following function:

Fðx, s, tÞ ¼

’0ðx
�ðs0, tÞ, tÞ, t 2 T, s ¼ s0;

’ðxðs, t1Þ, sÞ, s 2 S, t ¼ t1;

�’1ðx
þðs1, tÞ, tÞ, t 2 T, s ¼ s1:

8><
>:

The optimal control problem (1)–(5) is considered under the following suppositions:

(1) the diagonal elements ai¼ ai (s, t) of the matrix A are continuous and

continuously differentiable in P; in order to avoid awkward notations we

suppose that any two functions ai¼ ai (s, t) and aj¼ aj (s, t), i 6¼ j are being

everywhere distinct in P;
(2) the vector-function p¼ p(u, s) is continuous as a function of u, bounded

and measurable as a function of s;
(3) the vector-functions g(1)¼ g(1)(u(1)(t), t) and g(2)¼ g(2)(u(2)(t), t) are contin-

uous with respect to control variables, bounded and measurable with

respect to t;
(4) the vector-function f¼ f(x, s, t) and the scalar functions �¼�(x, s, t) and

F¼F(x, s, t) are continuous with respect to their arguments, and they have

continuous and bounded partial derivatives with respect to components of

the state vector.

It is suitable to use the definition of a generalized solution in terms of

characteristics of the system. Let us consider characteristic curves determined by the

ordinary differential equations

ds

dt
¼ aiðs, tÞ, i ¼ 1, 2, . . . , n: ð6Þ

Let si¼ si(�, �; t) be a solution of Equation (6), which passes through the point

(�, �)2P. If there exists a classical solution of the system under consideration, then

the given system is equivalent to the following one:

xiðs, tÞ ¼ xið�i, �iÞ þ

Z t

�i

fiðx, �, �Þ
��
�¼siðs,t;�Þ

d�, ð7Þ

where (�i, �i) is the initial point of i-th characteristic curve passing through (s, t).
By means of integral system (7) it is possible to prove the existence and

uniqueness of a measurable and almost everywhere bounded in P weak solution [5].

So, instead of the left side of system (1) we consider the differential operator

dx

dt

� �
A

¼
dx1
dt

� �
A

,
dx2
dt

� �
A

, . . . ,
dxn
dt

� �
A

� �
,
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where (dxi/dt)A is the derivative of i-th component of the state vector along the

corresponding family of characteristic curves.

3. Necessary optimality condition

To make the notation more compact, we need an operation of removal of the i-th

component of an arbitrary vector of the space En. Let a2En and bi2E
1. We denote

~ai ¼ ða1, a2, . . . , ai�1, aiþ1, . . . , anÞ,

a _þbi ¼ ða1, a2, . . . , ai�1, ai þ bi, aiþ1, . . . , anÞ:

Consider a case of starting control u¼ u(s).

THEOREM 3.1 Let the process {u, x} be optimal for problem (1)–(5). Then almost

everywhere on the segment S the following maximum condition is valid:

Jðuð�Þ, �Þ ¼ max
v2U

Jðv, �Þ, � 2 S, ð8Þ

where

Jðv, �Þ ¼
Xn
i¼1

�Fðzið�iÞ, �i, �iÞ
@sið�, �0; �iÞ

@�
�ð�i, �iÞ

�

þ

Z �i

t0

½h ~ iðs, tÞ, ~f iðziðtÞ, s, tÞi

��ðziðtÞ, s, tÞ�
��
s¼sið�, t0;�Þ

@sið�, t0; tÞ

@�
dt

�
:

Here h., .i is a designation of a scalar product in En�1,

ziðtÞ ¼ xðsið�, t0; tÞ, tÞ _þð yiðtÞ � xiðsið�, t0; tÞ, tÞÞ,

the functions yi(t) are defined by ordinary differential equations

_yiðtÞ ¼ fiðziðtÞ, sið�, t0; tÞ, tÞ, ð9Þ

t 2 ½t0; �i�; yiðt0Þ ¼ piðv, �Þ, ð10Þ

(�i, �i) are the end points for characteristic curves s¼ si(�, t0; t), and  ¼ (s, t) is

a solution of the conjugate problem

d 

dt

� �
A

þAsðs, tÞ ¼ �Hxð , x, s, tÞ, ðs, tÞ 2 P;

 ðs, t1Þ ¼ �’xðxðs, t1Þ, sÞ, s 2 S; ð11Þ

 iðs0, tÞ ¼
1

�iðs0, tÞ

@’0ðx
�ðs0, tÞ, tÞ

@xi
,

i ¼ 1, 2, . . . ,m1;
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 iðs1, tÞ ¼ �
1

�iðs1, tÞ

@’1ðx
þðs1, tÞ, tÞ

@xi
,

i ¼ m2,m2 þ 1, . . . , n;

on the considered optimal process,

�ð�i, �iÞ ¼

1, �i ¼ t1, s0 5 �i � s1;

�1=�iðs0, �iÞ, t0 5 �i � t1, �i ¼ s0;

�1=�iðs1, �iÞ, t0 5 �i � t1, �i ¼ s1:

8><
>:

In a similar way this theorem can be formulated for boundary controls

u(1)¼ u(1)(t), u(2)¼ u(2)(t).

Proof of Theorem 3.1 is performed by means of study of the cost functional

increment formula on needle variation of the form

�uðsÞ ¼
v� uðsÞ, s 2 S";

0, s 2 SnS":

�

Here S"¼ (�� ", �], the point �2 (s0, s1], the value "2 (0, �� s0] and v2U.
The estimation

k�xðs, tÞkEn � K", K4 0,

of the state increment for the considered variation is valid only for points which

do not belong to the characteristic bands

ðs, tÞ 2 P : sið� � ", t0; tÞ5 s � sið�, t0; tÞ
� �

:

It is impossible to estimate in a similar manner components �xi (s, t) of state

increments in the corresponding characteristic bands in terms of parameter of

measure of needle variation domain. Impossibility to prove analogues of classical

Pontryagin’s maximum principle is to be explained by just this circumstance.
The difference of further stages of the proof from the standard technique applied

to obtain necessary optimality conditions of first-order consists [2] in the following:

. in the increment formula the terms connected with increments of

components of the state vector in corresponding characteristic bands are

separated;
. by means of the change of integration variables we pass from integration

over segments containing endpoints of characteristics, which supports on

intervals of needle variation, to the integration over these segments of

variation;
. functions yi(t), which can be calculated in terms of data of the problem for

characteristic curves only, is introduced instead of components �xi in i-th

characteristic bands; so, we eliminate implicit dependence of components

�xi on characteristic curves si(�, t0; t) and on the rest of the components

of this increment. œ
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The proved theorem is a stronger necessary optimality condition in comparison

with the differential maximum principle.

4. An illustrative example

In the rectangle S�T, S¼ [sn, sk], T¼ [t0, t1] consider the following initial-boundary

value problem

x1t þ �x1s ¼ �ðsÞðx1 � x2Þ,

x2t � �x2s ¼ �ðsÞðx1 � x2Þ,

x1ðs, t0Þ ¼ uðsÞ þ qðsÞ, x2ðs, t0Þ ¼ uðsÞ � qðsÞ, s 2 S:

Admissible controls are supposed to be scalar functions u(s), which satisfy the

condition

uðsÞ 2 U � E1, s 2 S:

The problem is to minimize the functional

JðuÞ ¼

Z
S

x1ðs, t1Þ þ x2ðs, t1Þ � �ðsÞð Þ
2 ds:

The functions �(s), �(s), q(s), �(s) and the positive constant � are supposed to be

given. In addition, we propose that the condition

sk � sn 4 2�ðt1 � t0Þ, ð12Þ

is valid. Its meaning will be explained later.
Two characteristic families are determined by the equations s1¼��tþ const,

s2¼ �tþ const. Here

@s1ð�, t0; �Þ

@�
¼
@s2ð�, t0; �Þ

@�
¼ 1:

Let {u,x} be an optimal process and  (s, t) be a corresponding solution of the

conjugate problem

 1t þ � 1s ¼ �� 1 � � 2,

 2t � � 2s ¼ � 1 þ � 2,

 1ðs, t1Þ ¼  2ðs, t1Þ ¼ 2 �ðsÞ � x1ðs, t1Þ � x2ðs, t1Þð Þ, s 2 S,

 1ðsk, tÞ ¼  2ðsn, tÞ ¼ 0, t 2 T:

It follows from Theorem 3.1 that the maximum condition (11) of the functional

I(v, �) holds almost everywhere in S. A form of this functional and a corresponding

system of ordinary differential equations depend on the arrangement of a point �.
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(a) snþ (t1� t0)�� �� sk� (t1� t0)�.
The inequality (12) guarantees that this segment is non-empty. Equations of

characteristic curves originated from the point (�, t0) are the following:

s� 1 ¼ �ðt0 � tÞ þ �, s2 ¼ �ðt� t0Þ þ �:

The finishing points of these characteristics are the points of a segment {(s, t):

s2S, t¼ t1}. In our case

Iðv, �Þ ¼ � y1ðt1Þ þ x2ð�ðt0 � t1Þ þ �, t1Þ � �ð�ðt0 � t1Þ þ �Þð Þ
2

þ

Z t1

t0

 2ð�ðt0 � tÞ þ �, tÞ�ð�ðt0 � tÞ þ �Þð y1ðtÞ � x2ð�ðt0 � tÞ þ �, tÞÞdt

� y2ðt1Þ þ x1ð�ðt1 � t0Þ þ �, t1Þ � �ð�ðt1 � t0Þ þ �Þð Þ
2

þ

Z t1

t0

 1ð�ðt� t0Þ þ �, tÞ�ð�ðt� t0Þ þ �Þðx1ð�ðt� t0Þ þ �, tÞ � y2ðtÞÞ dt,

_y1ðtÞ ¼ �ð�ðt0 � tÞ þ �Þð y1ðtÞ � x2ð�ðt0 � tÞ þ �, tÞÞ, t 2 T,

_y2ðtÞ ¼ �ð�ðt� t0Þ þ �Þðx1ð�ðt0 � tÞ þ �, tÞ � y2ðtÞÞ, t 2 T,

y1ðt0Þ ¼ vð�Þ þ qð�Þ, y2ðt0Þ ¼ vð�Þ � qð�Þ:

(b) sn� �� sn+(t1� t0)�.
In this case a characteristic of the first family passes through a point (�, t0) and has

(sn, t0þ (�� sn)/�) as a finishing point. A characteristic of the second family finishes

in a point (�(t1� t0)þ �, t1). The cost functional is

Iðv, �Þ ¼

Z t0þð��snÞ=�

t0

 2ð�ðt0 � tÞ þ �, tÞ�ð�ðt0 � tÞ þ �Þð y1ðtÞ

� x2ð�ðt0 � tÞ þ �, tÞÞdt� y2ðt1Þ þ x1ð�ðt1 � t0Þ þ �, t1Þ � �ð�ðt1 � t0Þ þ �Þð Þ
2

þ

Z t1

t0

 1ð�ðt� t0Þ þ �, tÞ�ð�ðt� t0Þ þ �Þðx1ð�ðt� t0Þ þ �, tÞ � y2ðtÞÞdt:

Here functions y1(t) and y2(t) are solutions of Cauchy problem (9) and (10).

However, Equation (9) is considered for t2 [t0, t0þ (�� sn)/�].
(c) sk� (t1� t0)�5 �� sk.

This variant is a symmetric to the just-considered case. A characteristics of the

second family originated from the point (�, t0) has a point (sk, t0þ (sk� �)/�) as

a finishing point. A finishing point of a characteristics of the first family is

(�(t0� t1)þ �, t1).

Iðv, �Þ ¼ � y1ðt1Þ þ x2ð�ðt0� t1Þ þ �, t1Þ � �ð�ðt0� t1Þ þ �Þð Þ
2

þ

Z t1

t0

 2ð�ðt0� tÞ þ �, tÞ�ð�ðt0� tÞ þ �Þðy1ðtÞ � x2ð�ðt0� tÞ þ �; tÞÞdt

þ

Z t0þðsk��Þ=�

t0

 1ð�ðt� t0Þ þ �, tÞ�ð�ðt� t0Þ þ �Þðx1ð�ðt� t0Þ þ �, tÞ � y2ðtÞÞdt:
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Functions y1(t) and y2(t) are solutions of Cauchy problem (9) and (10). However,
Equation (9) is considered for t2 [t0, t0þ (sk� �)/�].

This example illustrates a variant of different diagonal elements of a matrix of
the hyperbolic operator. The corresponding optimal control problems by ordinary
differential equations has a number of distinctive features.

First of all, in spite of additivity of the cost functional each problem does
not separate into optimal control problems constructed along the corresponding
characteristic families. Secondly, each equation of an ordinary differential system is
considered, generally speaking, for different segments of independent variable.
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