Auctions 2: Models and Practice.

Sergei Izmalkov

March 25, 2010

イロン イヨン イヨン イヨン

æ

Revenue equivalence theorem: Key assumptions

- Two pairs (mechanism, equilibrium) with the same allocation rule
- Independence of valuations (information)
- Risk neutrality
- No budget constraints
- "No collusion" (correct equilibrium); "no resale" (correct game)

イロト イポト イヨト イヨト

Budget constraints

- ► Every bidder obtains value (signal) X_i ∈ [0, 1] and absolute budget W_i ∈ [0, 1].
- ► (X_i, W_i) are iid across bidders. (X_i and W_i need not be independent.)

Proposition: With budget-constrained bidders the expected revenue in a first-price auction is greater than in a second-price auction. (provided symmetric equilibrium exists.) **Intuition:** The bids in second-price auction are higher on average and so are more often constrained.

(Not enough: players will reduce bids in the first-price auction).

Proof: In the second-price auction:

 $\beta^{\mathsf{II}}(x,w) = \min\{x,w\}.$

Define (effective type) $x^{II} \sim (x, w)$ as the type that is effectively unconstrained and submits the same bid as (x, w). Can be found as a solution to

$$\beta^{\mathsf{II}}(x,w) = \beta^{\mathsf{II}}(x^{\mathsf{II}},1) = x^{\mathsf{II}}.$$

Let $Y_2^{II(N)}$ be the second highest of the equivalent values, x_i^{II} , among N bidders. Its distribution is

$$G^{II}(z) = \left(F^{II}(z)\right)^{N-1}$$

where $F^{II}(z)$ is the probability that $\beta^{II}(x, w) = \beta^{II}(x^{II}, 1) = x^{II} < z = \beta^{II}(z, 1).$ We have

$$E[R^{\mathsf{II}}] = E\left[Y_2^{\mathsf{II}(N)}\right]$$

In the first-price auction: Suppose a symmetric increasing equilibrium exists with

$$\beta^{\mathsf{I}}(x,w) = \min\{\beta(x),w\}.$$

Define $x^{I} \sim (x, w)$ as the solution to

$$\beta^{\mathsf{I}}(x,w) = \beta^{\mathsf{I}}(x^{\mathsf{I}},1) = \beta(x^{\mathsf{I}}) < x^{\mathsf{I}}.$$

Let $Y_2^{I(N)}$ be the second highest of the equivalent values, x_i^{I} , among N bidders. Its distribution is

$$G^{\mathsf{l}}(z) = \left(F^{\mathsf{l}}(z)\right)^{N-1}$$

We have

$$E[R^{\mathsf{I}}] = E\left[Y_2^{\mathsf{I}(N)}\right].$$

Note that $F^{I}(z) < F^{II}(z)$, and thus

$$E[R^{\mathsf{I}}] > E[R^{\mathsf{II}}].$$

All-pay auctions dominate first-price auctions in terms of revenue.

Other settings:

- Single-unit auctions: different allocation rules.
 e.g., with reserve price R or participation decisions.
- Multi-unit auctions with identical items.
 Q and q are quantity of items won.
- Bilateral and multilateral trade.
 Q and q is probability of trade (quantity).
- Monopolistic markets (models of discrimination)
 Q and q are quantities of goods sold or quality.
- Optimal taxation/ contractual schemes...

マロト イヨト イヨト

Bilateral Trade:

Coase Theorem: (about achievement of efficient organization of economic activity with negligible transaction costs.) EXACT conditions?

Coase Thm was used as an idea behind Russian privatization

イロト イヨト イヨト イヨト

3

Bilateral Trade:

Coase Theorem: (about achievement of efficient organization of economic activity with negligible transaction costs.) EXACT conditions?

- Coase Thm was used as an idea behind Russian privatization
- With incomplete information, Myerson-Satterthwaite Theorem says that efficient bilateral trade is IMPOSSIBLE

ヘロン 人間 とくほど くほとう

Bilateral Trade:

Coase Theorem: (about achievement of efficient organization of economic activity with negligible transaction costs.) EXACT conditions?

- Coase Thm was used as an idea behind Russian privatization
- With incomplete information, Myerson-Satterthwaite Theorem says that efficient bilateral trade is IMPOSSIBLE
- Efficient privatization auctions exist! (generalized Vickrey mechanism)

イロト イヨト イヨト イヨト

Budget constraints Application of Revenue equivalence

Bilateral Trade: setting

Independent private values setting with risk-neutral seller and buyer, no budget constraints.

- Single indivisible object for sale.
- ► S valuation of the seller; V valuation of the buyer.
- S ~ F_S[0, ω], V ~ F_V[0, ω] independent, and private; distributions are common knowledge

 (Myerson's IC analysis) Efficiency is incentive compatible: probably of receiving an item for the buyer is increasing in value; for the seller is decreasing.

- 4 同 ト 4 ヨ ト 4 ヨ ト

- (Myerson's IC analysis) Efficiency is incentive compatible: probably of receiving an item for the buyer is increasing in value; for the seller is decreasing.
- Vickrey mechanism: Efficient; prices are externalities on society

・ 同 ト ・ ヨ ト ・ ヨ ト

- (Myerson's IC analysis) Efficiency is incentive compatible: probably of receiving an item for the buyer is increasing in value; for the seller is decreasing.
- Vickrey mechanism: Efficient; prices are externalities on society
- ► Seller: Without him, Buyer $U_B = 0$, with trade, $U_B = V_B$, thus, $P_S = -V$.
- ▶ Buyer: Without him, $U_S = 0$; with trade, $U_S = -S$, thus, $P_B = S$.

- (Myerson's IC analysis) Efficiency is incentive compatible: probably of receiving an item for the buyer is increasing in value; for the seller is decreasing.
- Vickrey mechanism: Efficient; prices are externalities on society
- Seller: Without him, Buyer U_B = 0, with trade, U_B = V_B, thus, P_S = −V.
- ▶ Buyer: Without him, $U_S = 0$; with trade, $U_S = -S$, thus, $P_B = S$.
- Total transfer: $P_B + P_S = S V < 0$ (if V > S).

- Vickrey mechanism is Efficient, IC
- Vickrey mechanism is (best among) IR

- 4 回 2 4 三 2 4 三 2 4

æ

- Vickrey mechanism is Efficient, IC
- Vickrey mechanism is (best among) IR
- Revenue equivalence: Any other Efficient, IC, IR mechanism generates no more than Vickrey M.

イロト イポト イヨト イヨト

- Vickrey mechanism is Efficient, IC
- Vickrey mechanism is (best among) IR
- Revenue equivalence: Any other Efficient, IC, IR mechanism generates no more than Vickrey M.
- Vickrey M. runs expected deficit, thus, M-S: no efficient, IC, IR, BB mechanism exists. (Krishna & Perry theorem: Vickrey mechanism generates the most revenue among all efficient, IC mechanisms.)

イロン イヨン イヨン イヨン

- Vickrey mechanism is Efficient, IC
- Vickrey mechanism is (best among) IR
- Revenue equivalence: Any other Efficient, IC, IR mechanism generates no more than Vickrey M.
- Vickrey M. runs expected deficit, thus, M-S: no efficient, IC, IR, BB mechanism exists. (Krishna & Perry theorem: Vickrey mechanism generates the most revenue among all efficient, IC mechanisms.)
- The best constrained-efficient mechanism?

イロン イヨン イヨン イヨン

- Vickrey mechanism is Efficient, IC
- Vickrey mechanism is (best among) IR
- Revenue equivalence: Any other Efficient, IC, IR mechanism generates no more than Vickrey M.
- Vickrey M. runs expected deficit, thus, M-S: no efficient, IC, IR, BB mechanism exists. (Krishna & Perry theorem: Vickrey mechanism generates the most revenue among all efficient, IC mechanisms.)
- The best constrained-efficient mechanism?
- Double auction is the second-best for uniform distributions. Double auction gets closer to (full) efficiency as number of participants grows. Moreover, this happens "fast" and Market (Rational-Expectations) equilibrium in the limit.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Russian Privatization

Theoretical problems (Inefficiency):

- Auction mechanism: everyone wins in proportion to her bid better: dynamic auction, a la IPO auctions.
- Budget constraints better: delay in time, non-monetary auctions (payments spread-out in time).
- Coase Theorem better: (careful) efficient design.

(4回) (4回) (4回)