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Barabási, Albert

World-wide web graph

Experimental observations [Barabási, Albert (1999)]:
Sparse graphs (n vertices, mn edges)
Small world (diameter ≈ 5-7)
Power law

|{v : deg(v) = d}|
n

≈ c

dλ
, λ ∼ 2.1
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Preferential attachment

At the n-th step we add a new vertex n with m edges from it, with probability of edge
to a vertex i proportional to deg(i)

P(edge from n to i) =
deg(i)∑
j deg(j)

3/22 Andrei Raigorodskii 15TH RSA



Preferential attachment

Problems with formalization when m > 1

Theorem (Bollobás)

Let f(n), n ≥ 2, be any integer valued function with f(2) = 0 and
f(n) ≤ f(n+ 1) ≤ f(n) + 1 for every n ≥ 2, such that f(n)→∞ as n→∞. Then
there is a random graph process of Barabási and Albert T (n) such that, with
probability 1, T (n) has exactly f(n) triangles for all sufficiently large n.
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Bollobás–Riordan model

G
(n)
m – graph with n vertices and mn edges, m ∈ N.

dG(v) – degree of vertex v in graph G.

Case m =1

G
(1)
1 – graph with one vertex v1 and one loop.

Given G(n−1)
1 we can make G(n)

1 by adding vertex vn and edge from it to vertex vi,
picked from {v1, . . . , vn} with probability

P(i = s) =

{
d

G
(n−1)
1

(vs)/(2n− 1) 1 ≤ s ≤ n− 1

1/(2n− 1) s = n

Case m >1

Given G(mn)
1 we can make G(n)

m by gluing {v1, . . . , vm} into v′1 , {vm+1, . . . , v2m}
into v′2, and so on.
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Bollobás–Riordan model, Static description

Linearized chord diagrams (LCD) model

LCD with 2mn vertices and mn edges.

Denote by φ(L) graph obtained after gluing.
If L is chosen uniformly from all (2mn)!

(mn)!2mn LCDs with mn edges, then φ(L) has the

same distribution as G(n)
m .
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Bollobás–Riordan model

Theorem (Bollobás–Riordan–Spencer–Tusnády)

Let m ≥ 1 and ε ≥ 0 be fixed, and set

αm,d =
2m(m+ 1)

(d+m)(d+m+ 1)(d+m+ 2)
.

Then whp we have

(1− ε)αm,d ≤
#n

m(d)

n
≤ (1 + ε)αm,d

for every d in the range 0 ≤ d ≤ n
1
15

In particular, whp for all d in this range we have
#n

a,m(d)

n = Θ
(
d−3)

vs c · d−2.1 in
World-wide web.

Theorem (Bollobás–Riordan)

Fix an integer m ≥ 2 and a positive real number ε. Then whp G(n)
m is connected and has

diameter diam
(
G(n)

m

)
satisfying

(1− ε) logn/ log logn ≤ diam
(
G

(n)
m

)
≤ (1 + ε) logn/ log logn

In particular if n = 20 · 106 we have logn/ log logn ≈ 5.96.
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Theorem (Bollobás–Riordan–Spencer–Tusnády)
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αm,d =
2m(m+ 1)
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.

Then whp we have

(1− ε)αm,d ≤
#n

m(d)

n
≤ (1 + ε)αm,d

for every d in the range 0 ≤ d ≤ n
1
15

Theorem (Grechnikov)

E(#
n
m(d)) = I{d ≥ 0}

(2mn+ 1)(m+ 1)

(d+m)(d+m+ 1)(d+m+ 2)
−
I{d = 0}

m
+Om

(
d

n

)
I{X} — indicator of event X.

Theorem (Grechnikov)

If d = d(n) and ψ(n)→∞ when n→∞, then whp we have∣∣E(#
n
m(d))−#

n
m(d)

∣∣ ≤ (√d−3n+ d
−1
)
ψ(n)
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Buckley–Osthus model

Case m = 1

For a fixed positive integer a define a process H(n)
a,1 exactly as G(n)

1 is defined above,
but replacing probability of edge with

P(i = s) =


d

H
(n−1)
a,1

(vs)+a−1

(a+1)n−1
1 ≤ s ≤ n− 1

a
(a+1)n−1

s = n

where a is called "initial attractiveness"

Case m > 1

As for G(n)
m , a process H(n)

a,m is defined by identifying vertices in groups of m.
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Buckley–Osthus model

Theorem (Buckley–Osthus)

Let m ≥ 1 and a ≥ 1 be fixed integers, and set

αa,m,d = (a+ 1)(am+ a)!

(
d+ am− 1
am− 1

)
d!

(d+ am+ a+ 1)!
.

Let ε > 0 be fixed. Then whp we have

(1− ε)αa,m,d ≤
#n

a,m(d)

n
≤ (1 + ε)αa,m,d

for all d in the range 0 ≤ d ≤ n
1

100 (a+1). In particular, whp for all d in this range we have

#n
a,m(d)

n
= Θ

(
d
−2−a

)
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Buckley–Osthus model

Theorem (Grechnikov)

Let a > 0 be fixed real, then

E
(

#
n
a,m(d)

)
=

B(d+ma, a+ 2)

B(ma, a+ 1)
n+Oa,m

(
1

d

)
The asymptotic behavior of the coefficient when d grows is

B(d+ma, a+ 2)

B(ma, a+ 1)
∼

Γ(a+ 2)

B(ma, a+ 1)
d
−2−a

= (a+ 1)
Γ(ma+ a+ 1)

Γ(ma)
d
−2−a

Theorem (Grechnikov)

Let d1 > 0 and d2 > 0. Then

cov(#n
a,m(d1),#

n
a,m(d2)) = Oa,k((d

−2−a
1 + d

−2−a
2 )n+ d

−1
1 d

−1
2 )

Theorem (Grechnikov)

If d = d(n) and ψ(n)→∞ when n→∞, then whp we have∣∣∣∣#n
a,m(d)−

B(d+ma, a+ 2)

B(ma, a+ 1)
n

∣∣∣∣ ≤ (√d−a−2n+ d
−1
)
ψ(n)
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Buckley–Osthus model

Consequences

When d ∼ Cn
1

a+2 with some constant C,

E
(

#
n
a,m(d)

)
= O(1),

√
d−a−2n+ d

−1
= O(1).

If

d = o

(
n

1
a+2

)
,

then whp

#
n
a,m(d) ∼

(a+ 1)Γ(ma+ a+ 1)

Γ(ma)
d
−2−a

n.

If

d = ω

(
n

1
a+2

)
,

then whp #n
a,m(d) = o(1); since #n

a,m(d) is an integer number by definition, in this case whp

#
n
a,m(d) = 0.
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Link rings
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Link rings

N = number of edges between farm and buyers
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Link rings

X(d1, d2, n) – total number of edges linking a node with degree d1 and a node with degree
d2. When d1 = d2, we count every edge twice, but do not count loops.

The expected value for N given d(Ai) and d(Bj) is

N0 =
n∑

i=1

m∑
j=1

X(d(Ai), d(Bj), n).

If N ≤ N0, this structure can be a natural formation.

If N > N0, this structure is probably a real link farm with some buyers.
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Total number of edges between vertices with fixed degree

Theorem (Grechnikov)

There exists a function cX(d1, d2) such that

EX(d1, d2, n) = cX(d1, d2)n+Oa,m(1).

When both d1 and d2 grow, the asymptotic behaviour of cX is

cX(d1, d2) = ma(a+ 1)
Γ(ma+ a+ 1)

Γ(ma)

(d1 + d2)1−a

(d1)2(d2)2
·

·
(

1 +Oa,m

(
1

d1
+

1

d2
+

d1d2

(d1 + d2)2

))
.

Theorem (Grechnikov)

Let c > 0. Then

P
(
|X(d1, d2, n)− EX(d1, d2, n)| ≥ c(d1 + d2)

√
mn
)
≤ 2 exp

(
−
c2

8

)
.

In particular, if c(n)→∞ when n→∞, then whp |X − EX| < c(n)(d1 + d2)
√
mn
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Γ(ma+ a+ 1)

Γ(ma)

(d1 + d2)1−a

(d1)2(d2)2
·

·
(

1 +Oa,m

(
1

d1
+

1

d2
+

d1d2

(d1 + d2)2

))
.

Theorem (Grechnikov)

Let c > 0. Then

P
(
|X(d1, d2, n)− EX(d1, d2, n)| ≥ c(d1 + d2)

√
mn
)
≤ 2 exp

(
−
c2

8

)
.

In particular, if c(n)→∞ when n→∞, then whp |X − EX| < c(n)(d1 + d2)
√
mn
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Total number of edges between vertices with fixed degree

The formula for cX(d1, d2) does not give an asymptotic behaviour if

d2

d1
→ c 6= 0.

The precise bounds show that the term

(d1 + d2)1−a

d21d
2
2

still gives the correct order of growth for cX , but the coefficient can be different. And in fact,
the coefficient differs.

Theorem (Grechnikov)

There exists a function cX(d1, d2) such that

EX(d1, d2, n) = cX(d1, d2)n+Oa,m(1)

and

cX(d1, d2) =
Γ(d1 +ma)Γ(d2 +ma)Γ(d1 + d2 + 2ma+ 3)

Γ(d1 +ma+ 2)Γ(d2 +ma+ 2)Γ(d1 + d2 + 2ma+ a+ 2)
·

·ma(a+ 1)
Γ(ma+ a+ 1)

Γ(ma)

(
1 + θ(d1, d2)

(d1 +ma+ 1)(d2 +ma+ 1)

(d1 + d2 + 2ma+ 1)(d1 + d2 + 2ma+ 2)

)
where

−4 +
2

1 +ma
≤ θ(d1, d2) ≤ a

Γ(ma+ 1)Γ(2ma+ a+ 3)

Γ(2ma+ 2)Γ(ma+ a+ 2)
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Total number of edges between vertices with fixed degree in
Bollobás–Riordan model

Theorem (Grechnikov)

If d1 + d2 = 0, then X(d1, d2, n) = 0. If d1 + d2 ≥ 1, then

EX(d1, d2, n) =
m(m+ 1)

(d1 +m)(d1 +m+ 1)(d2 +m)(d2 +m+ 1)
·

·

1−
Cm+1

2m+2C
d1
d1+d2

C
d1+m+1
d1+d2+2m+2

 (2mn+ 1)−

−
m∑

i=1

C
d1+m−i

d1+d2+2m−2i

(d1 +m)(d2 +m)C
d1+m

d1+d2+2m

(
(2i)!

i!(i+ 1)!

m+ 1

2m
+ [i = m]

(2m)!

2(m− 1)!2

)
−

−[d1 = 0]
(m− 1)(m+ 1)

2m(d2 +m)(d2 +m+ 1)
−[d2 = 0]

(m− 1)(m+ 1)

2m(d1 +m)(d1 +m+ 1)
+Om,d1,d2

(
1

n

)
.
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2-nd degrees

Define 2-nd degree of vertex t as

d2(t) = #{i, j : i 6= t, j 6= t, it ∈ E(G
(n)
1 ), ij ∈ E(G

(n)
1 )}

Define by Xn(k) number of vertices with 2-nd degree equal to k in G(n)
1

Theorem (Grechnikov–Ostroumova)

For any k ≥ 1

E (Xn(k)) =
4n

k2

(
1 +O

(
k2

n

))(
1 +O

(
log2 k

k

))
.

Theorem (Ostroumova)

For any ε > 0 there is such a function ϕ(n) = o(n), that for any 1 ≤ k ≤ n1/6−ε,
whp we have

|Xn(k)− E (Xn(k)) | ≤
ϕ(n)

k2
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Number of copies of H in G(n)
m

Theorem about triangles (Bollobás)

E(#(K3, G
(n)
m )) = (1 + o (1))

(m− 1)m(m+ 1)
48

ln3(n)

Theorem about cycles (Bollobás)

E(#(l-cycles, G(n)
m )) = (1 + o(1))Cm,l (lnn)l

where Cm,l is a positive constant, Cm,l = Θ
(
ml
)

Theorem about pairs of adjacent edges (P2) (Bollobás)

(1− ε)m(m+ 1)
2

n lnn ≤ #(P2, G
(n)
m ) ≤ (1 + ε)

m(m+ 1)
2

n lnn

holds whp as n→∞ where ε > 0 be fixed
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Number of copies of H in G(n)
m

Theorem about arbitrary subgraph (Ryabchenko – Samosvat)

for arbitrary graph H

E
(

#
(
H,G

(n)
m

))
= Θ(1)

(
n#(di=0)(

√
n)#(di=1)(lnn)#(di=2)

)
m

(∑
di
2

)

where di — is degree of node i in H

or
E
(

#
(
H,G

(n)
m

))
= 0
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Directed Model

α, β, γ, δin, δout — parameters,
xi(n) — a number of vertices with indegree i,
yi(n) — a number of vertices with outdegree i.
Let

c1 =
α+ β

1 + δin(α+ γ)
, c2 =

β + γ

1 + δout(α+ γ)
.

Theorem

Let i ≥ 0. There exists pi, qi such that whp xi(n) = pin+ o(n), yi(n) = qin+ o(n).
If αδin + γ > 0 , γ < 1 then

pi ∼ Cini
−Xin

as i→∞, where Xin = 1 + 1
c1
, Cin — some positive constant.

If γδout + α > 0 , α < 1 then

qi ∼ Couti−Xout

as i→∞, where Xout = 1 + 1
c2
, Cout — some positive constant.
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Future Research

Consideration of all discussed properties in the directed model. We want to obtain
the same asymptotic and concentration results.

Studying of the distribution of second degrees in the Bollobás–Riordan model
with m ≥ 2.

Consideration of the second degree distribution in all discussed models.
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