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Barabasi, Albert

World-wide web graph

Experimental observations [Barabdsi, Albert (1999)]:
o Sparse graphs (n vertices, mn edges)
o Small world (diameter ~ 5-7)

o Power law
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Preferential attachment

At the n-th step we add a new vertex n with m edges from it, with probability of edge
to a vertex ¢ proportional to deg(i)

P(edge from n to i) = _des®)

Zj deg(j)
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Preferential attachment

4/22

Problems with formalization when m > 1

Theorem (Bollobas)

Let f(n), n > 2, be any integer valued function with f(2) = 0 and

fn) < f(n+1) < f(n) + 1 for every n > 2, such that f(n) — co as n — oco. Then
there is a random graph process of Barabasi and Albert 7(™) such that, with
probability 1, 7(™) has exactly f(n) triangles for all sufficiently large n.
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Bollobas—Riordan model

Gg,?) — graph with n vertices and mn edges, m € N.
dg(v) — degree of vertex v in graph G.
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Bollobas—Riordan model

Gg,?) — graph with n vertices and mn edges, m € N.
dg(v) — degree of vertex v in graph G.

Case m =1

G;l) — graph with one vertex v; and one loop.

Given G(ln_l) we can make Gg") by adding vertex v,, and edge from it to vertex v;,
picked from {v1,...,vn} with probability

S ) don-1(vs)/(2n—1) 1<s<n-—-1
(i=s)= 1/(2n — 1) s=n
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Bollobas—Riordan model

Gg,?) — graph with n vertices and mn edges, m € N.
dg(v) — degree of vertex v in graph G.

G;l) — graph with one vertex v; and one loop.

Given G(ln_l) we can make ng) by adding vertex v,, and edge from it to vertex v;,
picked from {v1,...,vn} with probability

S ) dyn-1)(vs)/(2n—1) 1<s<n-1
(i=s)= 1/(2n — 1) s=n

o

Given Ggmn) we can make Gs,?) by gluing {v1,...,vm} into v} , {Vm+1,...,v2m}
into v}, and so on.
2!
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Bollobas—Riordan model, Static description

Linearized chord diagrams (LCD) model
LCD with 2mn vertices and mn edges.

m=2

Vi Vi1 Vn

Denote by ¢(L) graph obtained after gluing.
If L is chosen uniformly from all —2™™!_ | CDs with mn edges, then ¢(L) has the

(mn)12mn

same distribution as G%L).
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Bollobas—Riordan model

Theorem (Bollobds—Riordan—Spencer—Tusnady)

Let m > 1 and € > 0 be fixed, and set

_ 2m(m + 1)
T dAm)(d+m+1)(d+m+2)°

Am.d

Then whp we have

_#n@
n

(1 —€am,a < < (14 €)am,a

1
for every d in the range 0 < d < ni5
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Theorem (Bollobds—Riordan—Spencer—Tusnady)

Let m > 1 and € > 0 be fixed, and set

_ 2m(m + 1)
T dAm)(d+m+1)(d+m+2)°

Am.d

Then whp we have

_#n@
n

(1 —€am,a < < (14 €)am,a

1
for every d in the range 0 < d < ni5

#D (D)
TamiD

In particular, whp for all d in this range we have €] (d_3)
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Bollobas—Riordan model

Theorem (Bollobds—Riordan—Spencer—Tusnady)

Let m > 1 and € > 0 be fixed, and set
_ 2m(m + 1)
T dAm)(d+m+1)(d+m+2)°

Am.d

Then whp we have

(1= Jama <T@ < (14 o,
n

1
for every d in the range 0 < d < ni5

#4,m (d)

In particular, whp for all d in this range we have -

O (d™?)

Theorem (Bollobas—Riordan)

Fix an integer m > 2 and a positive real number ¢. Then whp Gg,?) is connected and has
diameter diam (Gﬁ;‘)) satisfying

(1 —¢)logn/loglogn < diam (Gg::)) < (1+€)logn/loglogn
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Bollobas—Riordan model

Theorem (Bollobds—Riordan—Spencer—Tusnady)

Let m > 1 and € > 0 be fixed, and set
_ 2m(m + 1)
T dAm)(d+m+1)(d+m+2)°

Am.d

Then whp we have

_#n@
n

(I —-€)am,a < < (14 €)am,a

1
for every d in the range 0 < d < ni5

#4,m (d)
n -

In particular, whp for all d in this range we have €] (d_3)

Theorem (Bollobas—Riordan)

Fix an integer m > 2 and a positive real number ¢. Then whp Gg,?) is connected and has
diameter diam (Gﬁ:)) satisfying

(1 —¢)logn/loglogn < diam (GS:LL)) < (1+€)logn/loglogn

In particular if n = 20 - 10 we have log n/loglogn ~ 5.96.

7/22 Andrei Raigorodskii 15TH RSA



Bollobas—Riordan model

Theorem (Bollobds—Riordan—Spencer—Tusnady)
Let m > 1 and € > 0 be fixed, and set

2m(m + 1)
Ol = A myd+m+ 1) d+m+2)
Then whp we have
(- 9ama < P20 < (14 gap.

1
for every d in the range 0 < d < nis

. . #a,m (d)
In particular, whp for all d in this range we have —*— =

(C] (d_3) vsc-d” 2%t in
World-wide web.

Theorem (Bollobas—Riordan)

Fix an integer m > 2 and a positive real number ¢. Then whp Gg,?) is connected and has
diameter diam (Gﬁ;‘)) satisfying

(1 —¢)logn/loglogn < diam (Gg::)) < (1+€)logn/loglogn
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Bollobas—Riordan model

Theorem (Bollobds—Riordan—Spencer—Tusnady)

Let m > 1 and € > 0 be fixed, and set
- 2m(m + 1)
T d+m)(d+m+1)(d+m+2)°

Am.,d

Then whp we have

(1 - 6)o‘m,d <

#nld) ¢ (14 9ama
n

1
for every d in the range 0 < d < nis
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Bollobas—Riordan model

Theorem (Bollobas—Riordan—Spencer—Tusnady)
Let m > 1 and € > 0 be fixed, and set

- 2m(m + 1)
T d+m)(d+m+1)(d+m+2)°

Am.,d

Then whp we have

(1 - 6)0‘1n,d <

#nld) ¢ (14 9ama
n

1
for every d in the range 0 < d < nis

V.

Theorem (Grechnikov)

(2mn +1)(m + 1) _I{d=o0} d
CEN) EE ) R ™ +O’”< >

E(#m(d) = I{d = 0}

I{X} — indicator of event X.

Theorem (Grechnikov)

If d = d(n) and ¥(n) — oo when n — oo, then whp we have

|BE@# (D) = #m (@] < (Vd@Fn+d7") p(n)
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Buckley—Osthus model

For a fixed positive integer a define a process H‘(Inl) exactly as Gg") is defined above,
but replacing probability of edge with

d_(n—1)(¥s)ta—1
2.1 1<s<n-1

Pi=s8)=1{ ~ (afDn=1
4 s=n

(a+1)n—1

where a is called "initial attractiveness"

9/22 Andrei Raigorodskii 15TH RSA



Buckley—Osthus model

For a fixed positive integer a define a process H‘(Inl) exactly as G’g") is defined above,
but replacing probability of edge with

dH(n—l) (vs)+a—1
2.1 1<s<n-1

Pi=s8)=1{ ~ (afDn=1
4 s=n

(a+1)n—1

where a is called "initial attractiveness"

Tfr)n is defined by identifying vertices in groups of m.

As for GS,?) , a process Hé
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Buckley—Osthus model

Theorem (Buckley—Osthus)

Let m > 1 and a > 1 be fixed integers, and set

d+am—1) d!
(

ma = (ot Dam+ap (T T

Let € > O be fixed. Then whp we have

#a m(d)
(1 —e)aa,m,a < ’n <A+ e)aa,m,da
1
for all d in the range 0 < d < n 100 (at+D) particular, whp for all d in this range we have
n
d
#a ( ) —o (dfgfa)

,m
n
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Buckley—Osthus model

Theorem (Buckley—Osthus)

Let m > 1 and a > 1 be fixed integers, and set

d+am—1) d!
(

ma = (ot Dam+ap (T T

Let € > O be fixed. Then whp we have

#a m(d)
(1 —e)aa,m,a < ’n <A+ e)aa,m,da
1
for all d in the range 0 < d < nT00 (at+D) particular, whp for all d in this range we have
n
d
#a ( ) —o (dfgfa)

,m
n
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Buckley—Osthus model

Theorem (Grechnikov)

Let a > 0 be fixed real, then

n B(d + ma,a + 2) 1
E d = O, =
<#”’"‘( )) B(ma,a + 1) (057 o (d)
The asymptotic behavior of the coefficient when d grows is

B(d + ma,a + 2) I'(a+2) a2

I'(ma+a+1) g-2-°
B(ma,a + 1) B(ma,a + 1)

=+ T'(ma)
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Buckley—Osthus model

Let a > 0 be fixed real, then

n B(d + ma,a+ 2) 1
E d)) = — 1~ o) -
<#”’"‘( )) B(ma,a + 1) 23 L (d)
The asymptotic behavior of the coefficient when d grows is
B(d + ma,a + 2) I'(a+2)

I'(ma+a+1) g-2-°
B(ma,a + 1) B(ma,a + 1)

—2—a __
d = (@2 T'(ma)

4

Theorem (Grechnikov)

Let d; > 0 and d> > 0. Then
cov(#n 1 (d1), #2 1n(d2) = O i ((d7 2% +d5 ° ™ “)n + dy "dy '
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Buckley—Osthus model

Let a > 0 be fixed real, then

n B(d + ma,a+ 2) 1
E df=———— o) -
<#“’m( )) B(ma,a + 1) n+ Cam (d)
The asymptotic behavior of the coefficient when d grows is
B(d + ma,a + 2) I'(a+2)

I'(ma+a+1) g-2-°
B(ma,a + 1) B(ma,a + 1)

—2—a __
d = (@2 T'(ma)

v

Theorem (Grechnikov)

Let d; > 0 and d> > 0. Then
cov(#n 1 (d1), #2 1n(d2) = O i ((d7 2% +d5 ° ™ “)n + dy "dy '

v

Theorem (Grechnikov)

If d = d(n) and ¥(n) — oo when n — oo, then whp we have

l#Z,m(d) - %nl < (V&2 +d7") v(n)

\,
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Buckley—Osthus model

Consequences

1
When d ~ Cn a+2 with some constant C,

E (#5 ,(d) = 0(1), V&= +d~! = 0(1).

If
_1_
d=o (n a+2) s
then whp
(a+1)T'(ma+a+1) _o_
nod) ~ d “n.
#2 (@) N n
If

_1_
d=w <na+2> s
then whp #7 . (d) = o(1); since #7; ,,,(d) is an integer number by definition, in this case whp

#a,m (d) = 0.
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Link rings

é B
k buyers

Link farm
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Link rings

‘ B
k buyers

Link farm

N = number of edges between farm and buyers
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X (dy,d2,n) — total number of edges linking a node with degree d; and a node with degree
d2. When d; = da, we count every edge twice, but do not count loops.

The expected value for N given d(A;) and d(Bj) is

No = Zl Zl X (d(A;),d(B;),n).
oz
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X (dy,d2,n) — total number of edges linking a node with degree d; and a node with degree
d2. When d; = da, we count every edge twice, but do not count loops.

The expected value for N given d(A;) and d(Bj) is

No = Zl Zl X (d(A;),d(B;),n).
oz

@ If N < Ny, this structure can be a natural formation.
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X (dy,d2,n) — total number of edges linking a node with degree d; and a node with degree
d2. When d; = da, we count every edge twice, but do not count loops.

The expected value for N given d(A;) and d(Bj) is

No = Zl Zl X (d(A;),d(B;),n).
oz

@ If N < Ny, this structure can be a natural formation.

@ If N > Ny, this structure is probably a real link farm with some buyers.
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Total number of edges between vertices with fixed degree

Theorem (Grechnikov)

There exists a function cx (d1, d2) such that

EX(d1,d2,n) = cx(di1,d2)n + Oq,m(1).

When both d; and d2 grow, the asymptotic behaviour of cx is

I'(ma+a+1) (di +d2)' = )
I'(ma) (d1)?(d2)?

1 1 dids
: 1+oam<—+—+7>)‘
< ' di  dy  (di+d2)?

cx (di,d2) = ma(a + 1)

Andrei Raigorodskii 15TH RSA



Total number of edges between vertices with fixed degree

15/22

Theorem (Grechnikov)

There exists a function cx (d1, d2) such that
EX(dl, ds, n) =cx (dl, dz)n —+ Oa’m(l).

When both d; and d2 grow, the asymptotic behaviour of cx is

L(ma+a+1) (di +dp)' ™ )
I'(ma) (d1)?(d2)?

1 1 dids
(100 (e oYY
( ' di  dy  (di+d2)?

cx (di,d2) = ma(a + 1)

Theorem (Grechnikov)

| A\

Let ¢ > 0. Then

2
P (|X(d1,d2,n) — EX(d1,dz2,n)| > c(dy + d2)v/mn) < 2exp <7%> .

In particular, if ¢(n) — oo when n — oo, then whp | X — EX| < ¢(n)(d1 + d2)v/mn
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Total number of edges between vertices with fixed degree

The formula for cx (d1, d2) does not give an asymptotic behaviour if
da
— —c#0.
d1 75
The precise bounds show that the term
(dy 4 dg)*~*
did3
still gives the correct order of growth for cx, but the coefficient can be different. And in fact,
the coefficient differs.
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Total number of edges between vertices with fixed degree

16/22

The formula for cx (d1, d2) does not give an asymptotic behaviour if

d
diiHC?éO'

The precise bounds show that the term

(di +d2)'
d3d3

still gives the correct order of growth for cx, but the coefficient can be different. And in fact,
the coefficient differs.

Theorem (Grechnikov)

There exists a function cx (d1, d2) such that
EX(dl, ds, n) =cx (dl, dz)’n =+ Oa’m(l)

and

I'(d1 + ma)T'(d2 + ma)I'(di + d2 + 2ma + 3)
(d1 + ma + 2)I'(d2 + ma + 2)I'(d1 + d2 + 2ma + a + 2)

cx (di,d2) = =

r 1 d 1)(d 1
~ma(a+1)M(l+0(d1,dz) (d1 + ma +1)(d2 + ma + 1) )
T'(ma) (d1 + da + 2ma + 1)(d1 + d2 + 2ma + 2)
where 1" 1T(2 3
e < O(dy, dp) < o Dime+ DI@mata+ 3)
1+ ma T'(2ma + 2)T'(ma + a + 2)
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Total number of edges between vertices with fixed degree in

Bollobas—Riordan model

Theorem (Grechnikov)

If di + d2 = 0, then X(dl,dz,n) =0.Ifdy +d2 > 1, then

_ m(m + 1)

~ (di+m)(di +m+1)(d2 +m)(dz +m+ 1)
m+1 dy

: ( - sz“Cd”dQ) (2mn +1)—

cdrtmt
dy+do+2m+2

EX(dl, dg, n)

di+m—i
~ Col am—si ( (20! m+1 (2m)! )_
i

- +[i=m]————
o1 (A +m)(dz +m)C T, \EGEH D 2m 2(m — 1)12

(m —1)(m+1) _ (m —1)(m +1) 1
2m(da + m)(da + m + 1) ~[d2 = 0] 2m(dy + m)(d1 + m + 1) +O0m,a;,dz ( ) ‘

3

—[d1 = 0]

V.
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2-nd degrees

Define 2-nd degree of vertex t as
do(t) = #{i,j i # 1,5 # t,it € B(G™M),ij € BG{™)}

Define by X, (k) number of vertices with 2-nd degree equal to k in G(ln)
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2-nd degrees

18/22

Define 2-nd degree of vertex t as
do(t) = #{i,j i # 1,5 # t,it € B(G™M),ij € BG{™)}

Define by X, (k) number of vertices with 2-nd degree equal to k in G(ln)

Theorem (Grechnikov—Ostroumova)

For any k£ > 1

sonie 1 (10 (£)) v 52
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2-nd degrees

Define 2-nd degree of vertex t as
do(t) = #{i,j i # 1,5 # t,it € E(G),ij € B(G{™)}

Define by X, (k) number of vertices with 2-nd degree equal to k in G’(ln)

Theorem (Grechnikov—Ostroumova)

For any k£ > 1
sosctr= 1 (110 (£)) v (52

v
Theorem (Ostroumova)

For any ¢ > 0 there is such a function ¢(n) = o(n), that for any 1 < k < n'/6—¢,
whp we have

»(n)
k2

| X0 (k) = E (Xn(k)| <
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Number of copies of H in Gy,

Theorem about triangles (Bollobas)

(m—1)m(m+1)

E(#(K3,Gi))) = (L +0(1)) In®(n)

48
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Number of copies of H in Gy,

Theorem about triangles (Bollobas)

(m—1)m(m+1)

3
T In®(n)

E(#(K3,GW) = (L +0(1))

Theorem about cycles (Bollobas)
E(#(l-cycles, G1)) = (1 4 0(1))Cypr i (In n)!

where C,,,; is a positive constant, Cy,; = © (m')

v
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Number of copies of H in Gy,

Theorem about triangles (Bollobas)

(m —1)m(m + 1)

3
T In®(n)

E(#(K3,GW) = (L +0(1))

Theorem about cycles (Bollobas)
E(#(l-cycles, G1)) = (1 4 0(1))Cypr i (In n)!

where C,, ; is a positive constant, Cp,; = O (m')

v

Theorem about pairs of adjacent edges (FP2) (Bollobas)

Mnlnn < #(Py, G™M) < (1 + e)wnlnn

holds whp as n — oo where € > 0 be fixed

v
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g

Number of copies of H in Gy,

Theorem about arbitrary subgraph (Ryabchenko — Samosvat)

for arbitrary graph H

B (# (H,G5P)) = 6(1) (n#8=0 (i) #a =1 (1n m) #(@=2)) m(Z)

where d; — is degree of node i in H

or

b (4 (1.65)) -0
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Directed Model

21/22

a, 3,7, 0in, dout — parameters,
zi(n) — a number of vertices with indegree 4,
y;(n) — a number of vertices with outdegree 7.

Let
_ a+p oy — B+~
14 Gin(a+7)’ 1+ Sout(a+7) "

Cc1
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Directed Model

21/22

a, 3,7, %in, dout — parameters,
z;(n) — a number of vertices with indegree 7,
y;(n) — a number of vertices with outdegree 7.
Let
a+p B+~

c1 = ,C2 = .
! 1+ 6in(a+7) 2 14 dout(a +7)

Theorem

Let 4 > 0. There exists p;, g; such that whp z;(n) = p;n + o(n), yi(n) = ¢;n + o(n).
If adj, +v >0, v <1 then
pi ~ Cipi~Xin

as i — oo, where X;, =1+ i, Ci, — some positive constant.
If y0out + @ >0, a < 1 then

qi ~ Couti ™ Fout

as 1 — oo, where Xout = 1 + é, Cout — some positive constant.
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Future Research

o Consideration of all discussed properties in the directed model. We want to obtain
the same asymptotic and concentration results.
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@ Studying of the distribution of second degrees in the Bollobds—Riordan model
with m > 2.
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Future Research

o Consideration of all discussed properties in the directed model. We want to obtain
the same asymptotic and concentration results.

@ Studying of the distribution of second degrees in the Bollobds—Riordan model
with m > 2.

o Consideration of the second degree distribution in all discussed models.
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