Web graph models: properties and applications

Andrei Raigorodskii

Yandex, MSU, MIPT

Redmond 5 July, 2011

문 🛌 문

Experimental observations [Barabási, Albert (1999)]:

⊒ ⊳

Experimental observations [Barabási, Albert (1999)]:

• Sparse graphs (*n* vertices, *mn* edges)

Experimental observations [Barabási, Albert (1999)]:

- Sparse graphs (*n* vertices, *mn* edges)
- Small world (diameter pprox 5-7)

Experimental observations [Barabási, Albert (1999)]:

- Sparse graphs (*n* vertices, *mn* edges)
- Small world (diameter pprox 5-7)
- Power law

$$\frac{|\{v: \deg(v) = d\}|}{n} \approx \frac{c}{d^{\lambda}}, \quad \lambda \sim 2.1$$

At the *n*-th step we add a new vertex n with m edges from it, with probability of edge to a vertex i proportional to deg(i)

< ∃ >

э

Problems with formalization when $m>1\,$

Theorem (Bollobás)

Let f(n), $n \ge 2$, be any integer valued function with f(2) = 0 and $f(n) \le f(n+1) \le f(n) + 1$ for every $n \ge 2$, such that $f(n) \to \infty$ as $n \to \infty$. Then there is a random graph process of Barabási and Albert $T^{(n)}$ such that, with probability 1, $T^{(n)}$ has exactly f(n) triangles for all sufficiently large n.

프 🖌 🛪 프 🛌

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

 $G_m^{(n)}$ – graph with n vertices and mn edges, $m \in \mathbb{N}$. $d_G(v)$ – degree of vertex v in graph G.

A D > A B >
 A

∃ 900

医子子 医子子

 $\label{eq:Gm} \begin{array}{l} G_m^{(n)} - \text{graph with } n \text{ vertices and } mn \text{ edges, } m \in \mathbb{N}. \\ d_G(v) - \text{degree of vertex } v \text{ in graph } G. \end{array}$

Case m =1

 $G_1^{(1)}$ – graph with one vertex v_1 and one loop. Given $G_1^{(n-1)}$ we can make $G_1^{(n)}$ by adding vertex v_n and edge from it to vertex v_i , picked from $\{v_1, \ldots, v_n\}$ with probability

$$\mathbf{P}(i=s) = \begin{cases} d_{G_1^{(n-1)}}(v_s)/(2n-1) & 1 \le s \le n-1 \\ 1/(2n-1) & s=n \end{cases}$$

 $\label{eq:Gm} \begin{array}{l} G_m^{(n)} - \text{graph with } n \text{ vertices and } mn \text{ edges, } m \in \mathbb{N}. \\ d_G(v) - \text{degree of vertex } v \text{ in graph } G. \end{array}$

Case m =1

 $G_1^{(1)}$ – graph with one vertex v_1 and one loop. Given $G_1^{(n-1)}$ we can make $G_1^{(n)}$ by adding vertex v_n and edge from it to vertex v_i , picked from $\{v_1, \ldots, v_n\}$ with probability

$$\mathbf{P}(i=s) = \begin{cases} d_{G_1^{(n-1)}}(v_s)/(2n-1) & 1 \le s \le n-1 \\ 1/(2n-1) & s=n \end{cases}$$

Case m > 1

Given $G_1^{(mn)}$ we can make $G_m^{(n)}$ by gluing $\{v_1, \ldots, v_m\}$ into v_1' , $\{v_{m+1}, \ldots, v_{2m}\}$ into v_2' , and so on.

Linearized chord diagrams (LCD) model

LCD with 2mn vertices and mn edges.

Denote by $\phi(L)$ graph obtained after gluing. If L is chosen uniformly from all $\frac{(2mn)!}{(mn)!2^{mn}}$ LCDs with mn edges, then $\phi(L)$ has the same distribution as $G_m^{(n)}$.

Let $m\geq 1$ and $\epsilon\geq 0$ be fixed, and set

$$\alpha_{m,d} = \frac{2m(m+1)}{(d+m)(d+m+1)(d+m+2)}.$$

Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $0 \leq d \leq n^{\frac{1}{15}}$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ \(\mathcal{P}\)

프 🖌 🛪 프 🛌

Let $m\geq 1$ and $\epsilon\geq 0$ be fixed, and set

$$\alpha_{m,d} = \frac{2m(m+1)}{(d+m)(d+m+1)(d+m+2)}.$$

Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $0 \le d \le n^{\frac{1}{15}}$

In particular, whp for all d in this range we have $\frac{\#^n_{a,m}(d)}{n} = \Theta\left(d^{-3}\right)$

< 口 > < 同

문▶ ★ 문▶

3

Let $m \geq 1$ and $\epsilon \geq 0$ be fixed, and set

$$\alpha_{m,d} = \frac{2m(m+1)}{(d+m)(d+m+1)(d+m+2)}.$$

Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $0 \leq d \leq n^{\frac{1}{15}}$

In particular, whp for all d in this range we have $\frac{\#_{a,m}^n(d)}{n} = \Theta\left(d^{-3}\right)$

Theorem (Bollobás–Riordan)

Fix an integer $m \ge 2$ and a positive real number ϵ . Then whp $G_m^{(n)}$ is connected and has diameter diam $\left(G_m^{(n)}\right)$ satisfying

$$(1-\epsilon)\log n/\log\log n \le \mathsf{diam}\left(G_m^{(n)}
ight) \le (1+\epsilon)\log n/\log\log n$$

(日) (國) (王) (王) (王)

Let $m \geq 1$ and $\epsilon \geq 0$ be fixed, and set

$$\alpha_{m,d} = \frac{2m(m+1)}{(d+m)(d+m+1)(d+m+2)}.$$

Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $0 \leq d \leq n^{\frac{1}{15}}$

In particular, whp for all d in this range we have $\frac{\#_{a,m}^n(d)}{n} = \Theta\left(d^{-3}\right)$

Theorem (Bollobás–Riordan)

Fix an integer $m\geq 2$ and a positive real number $\epsilon.$ Then whp $G_m^{(n)}$ is connected and has diameter diam $\left(G_m^{(n)}\right)$ satisfying

$$(1-\epsilon)\log n/\log\log n \le \operatorname{diam}\left(G_m^{(n)}\right) \le (1+\epsilon)\log n/\log\log n$$

・ロト ・個ト ・ヨト ・ヨトー

3

In particular if $n = 20 \cdot 10^6$ we have $\log n / \log \log n \approx 5.96$.

Let $m\geq 1$ and $\epsilon\geq 0$ be fixed, and set

$$\alpha_{m,d} = \frac{2m(m+1)}{(d+m)(d+m+1)(d+m+2)}.$$

Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $0 \leq d \leq n^{\frac{1}{15}}$

In particular, whp for all d in this range we have $\frac{\#_{a,m}^n(d)}{n} = \Theta(d^{-3})$ vs $c \cdot d^{-2.1}$ in World-wide web.

Theorem (Bollobás–Riordan)

Fix an integer $m\geq 2$ and a positive real number $\epsilon.$ Then whp $G_m^{(n)}$ is connected and has diameter diam $\left(G_m^{(n)}\right)$ satisfying

$$(1-\epsilon)\log n/\log\log n \le \operatorname{diam}\left(G_m^{(n)}\right) \le (1+\epsilon)\log n/\log\log n$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

3

In particular if $n = 20 \cdot 10^6$ we have $\log n / \log \log n \approx 5.96$.

Bollobás–Riordan model

Theorem (Bollobás–Riordan–Spencer–Tusnády)

Let $m\geq 1$ and $\epsilon\geq 0$ be fixed, and set

$$\alpha_{m,d} = \frac{2m(m+1)}{(d+m)(d+m+1)(d+m+2)}.$$

Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $0 \le d \le n^{\frac{1}{15}}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A@

Bollobás-Riordan model

Theorem (Bollobás–Riordan–Spencer–Tusnády)

Let $m \ge 1$ and $\epsilon \ge 0$ be fixed, and set

$$\alpha_{m,d} = \frac{2m(m+1)}{(d+m)(d+m+1)(d+m+2)}.$$

Then whp we have

$$(1-\epsilon)\alpha_{m,d} \le \frac{\#_m^n(d)}{n} \le (1+\epsilon)\alpha_{m,d}$$

for every d in the range $0 \le d \le n^{\frac{1}{15}}$

Theorem (Grechnikov)

$$E(\#_m^n(d)) = I\{d \ge 0\} \frac{(2mn+1)(m+1)}{(d+m)(d+m+1)(d+m+2)} - \frac{I\{d=0\}}{m} + O_m\left(\frac{d}{n}\right)$$

 $I\{X\}$ — indicator of event X.

Theorem (Grechnikov)

If d = d(n) and $\psi(n) \to \infty$ when $n \to \infty$, then whp we have

$$E(\#_m^n(d)) - \#_m^n(d) \le \left(\sqrt{d^{-3}n} + d^{-1}\right)\psi(n)$$

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

$\mathsf{Case}\ \mathsf{m}=1$

For a fixed positive integer a define a process $H_{a,1}^{(n)}$ exactly as $G_1^{(n)}$ is defined above, but replacing probability of edge with

$$\mathbf{P}(i=s) = \begin{cases} \begin{array}{c} \frac{d_{H_{a,1}^{(n-1)}(v_s)+a-1}}{(a+1)n-1} & 1 \le s \le n-1 \\ \frac{a}{(a+1)n-1} & s=n \end{array} \end{cases}$$

where \boldsymbol{a} is called "initial attractiveness"

프 > 프

$\mathsf{Case}\ \mathsf{m}=1$

For a fixed positive integer a define a process $H_{a,1}^{(n)}$ exactly as $G_1^{(n)}$ is defined above, but replacing probability of edge with

$$\mathbf{P}(i=s) = \begin{cases} \begin{array}{c} \frac{d_{H_{a,1}^{(n-1)}(v_s)+a-1}}{(a+1)n-1} & 1 \le s \le n-1 \\ \frac{a}{(a+1)n-1} & s=n \end{array} \end{cases}$$

where \boldsymbol{a} is called "initial attractiveness"

Case m > 1

As for ${\cal G}_m^{(n)}$, a process ${\cal H}_{a,m}^{(n)}$ is defined by identifying vertices in groups of m.

물 위 위 물 위 문 물

Theorem (Buckley–Osthus)

Let $m \ge 1$ and $a \ge 1$ be fixed integers, and set

$$\alpha_{a,m,d} = (a+1)(am+a)! \left(\begin{array}{c} d+am-1\\ am-1 \end{array} \right) \frac{d!}{(d+am+a+1)!}$$

Let $\epsilon > 0$ be fixed. Then ${\bf whp}$ we have

$$(1-\epsilon)\alpha_{a,m,d} \le \frac{\#_{a,m}^n(d)}{n} \le (1+\epsilon)\alpha_{a,m,d}$$

for all d in the range $0 \leq d \leq n^{\frac{1}{100}(a+1)}.$ In particular, whp for all d in this range we have

$$\frac{\#_{a,m}^n(d)}{n} = \Theta\left(d^{-2-a}\right)$$

ヨ▶ ▲ヨ▶ ヨ のへで

A D > A B >
 A

Theorem (Buckley–Osthus)

Let $m \ge 1$ and $a \ge 1$ be fixed integers, and set

$$\alpha_{a,m,d} = (a+1)(am+a)! \left(\begin{array}{c} d+am-1\\ am-1 \end{array} \right) \frac{d!}{(d+am+a+1)!}$$

Let $\epsilon > 0$ be fixed. Then ${\bf whp}$ we have

$$(1-\epsilon)\alpha_{a,m,d} \le \frac{\#_{a,m}^n(d)}{n} \le (1+\epsilon)\alpha_{a,m,d}$$

for all d in the range $0 \leq d \leq n^{\frac{1}{100}(a+1)}.$ In particular, whp for all d in this range we have

$$\frac{\#_{a,m}^n(d)}{n} = \Theta\left(d^{-2-a}\right)$$

ヨ▶ ▲ヨ▶ ヨ のへで

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Buckley–Osthus)

Let $m \ge 1$ and $a \ge 1$ be fixed integers, and set

$$\alpha_{a,m,d} = (a+1)(am+a)! \left(\begin{array}{c} d+am-1\\ am-1 \end{array} \right) \frac{d!}{(d+am+a+1)!}$$

Let $\epsilon > 0$ be fixed. Then ${\bf whp}$ we have

$$(1-\epsilon)\alpha_{a,m,d} \le \frac{\#_{a,m}^n(d)}{n} \le (1+\epsilon)\alpha_{a,m,d}$$

for all d in the range $0 \le d \le n^{\frac{1}{100}(a+1)}$. In particular, whp for all d in this range we have

$$\frac{\#_{a,m}^{n}(d)}{n} = \Theta\left(d^{-2-a}\right)$$

ヨ▶ ▲ヨ▶ ヨ のへで

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let a > 0 be fixed real, then

$$E\left(\#_{a,m}^{n}(d)\right) = \frac{\mathbf{B}(d+ma,a+2)}{\mathbf{B}(ma,a+1)}n + O_{a,m}\left(\frac{1}{d}\right)$$

The asymptotic behavior of the coefficient when d grows is

$$\frac{\mathcal{B}(d+ma,a+2)}{\mathcal{B}(ma,a+1)} \sim \frac{\Gamma(a+2)}{\mathcal{B}(ma,a+1)} d^{-2-a} = (a+1) \frac{\Gamma(ma+a+1)}{\Gamma(ma)} d^{-2-a}$$

A D > A B >
 A

₹ 9Q@

프 🖌 🛪 프 🛌

Let a > 0 be fixed real, then

$$E\left(\#_{a,m}^{n}(d)\right) = \frac{\mathbf{B}(d+ma,a+2)}{\mathbf{B}(ma,a+1)}n + O_{a,m}\left(\frac{1}{d}\right)$$

The asymptotic behavior of the coefficient when d grows is

$$\frac{\mathcal{B}(d+ma,a+2)}{\mathcal{B}(ma,a+1)} \sim \frac{\Gamma(a+2)}{\mathcal{B}(ma,a+1)} d^{-2-a} = (a+1) \frac{\Gamma(ma+a+1)}{\Gamma(ma)} d^{-2-a}$$

A D > A B >
 A

₹ 9Q@

프 에 에 프 어 - -

Let a > 0 be fixed real, then

$$E\left(\#_{a,m}^{n}(d)\right) = \frac{\mathbf{B}(d+ma,a+2)}{\mathbf{B}(ma,a+1)}n + O_{a,m}\left(\frac{1}{d}\right)$$

The asymptotic behavior of the coefficient when d grows is

$$\frac{\mathcal{B}(d+ma,a+2)}{\mathcal{B}(ma,a+1)} \sim \frac{\Gamma(a+2)}{\mathcal{B}(ma,a+1)} d^{-2-a} = (a+1) \frac{\Gamma(ma+a+1)}{\Gamma(ma)} d^{-2-a}$$

Theorem (Grechnikov)

Let $d_1 > 0$ and $d_2 > 0$. Then

$$\operatorname{cov}(\#_{a,m}^{n}(d_{1}),\#_{a,m}^{n}(d_{2})) = O_{a,k}((d_{1}^{-2-a} + d_{2}^{-2-a})n + d_{1}^{-1}d_{2}^{-1})$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 🖌 🛪 프 🛌

E DQC

Let a > 0 be fixed real, then

$$E\left(\#_{a,m}^{n}(d)\right) = \frac{B(d+ma,a+2)}{B(ma,a+1)}n + O_{a,m}\left(\frac{1}{d}\right)$$

The asymptotic behavior of the coefficient when d grows is

$$\frac{\mathcal{B}(d+ma,a+2)}{\mathcal{B}(ma,a+1)} \sim \frac{\Gamma(a+2)}{\mathcal{B}(ma,a+1)} d^{-2-a} = (a+1) \frac{\Gamma(ma+a+1)}{\Gamma(ma)} d^{-2-a}$$

Theorem (Grechnikov)

Let $d_1 > 0$ and $d_2 > 0$. Then

$$\operatorname{cov}(\#^n_{a,m}(d_1),\#^n_{a,m}(d_2)) = O_{a,k}((d_1^{-2-a} + d_2^{-2-a})n + d_1^{-1}d_2^{-1})$$

Theorem (Grechnikov)

If
$$d = d(n)$$
 and $\psi(n) \to \infty$ when $n \to \infty$, then whp we have

$$\#_{a,m}^{n}(d) - \frac{\mathbf{B}(d+ma,a+2)}{\mathbf{B}(ma,a+1)}n \bigg| \le \left(\sqrt{d^{-a-2}n} + d^{-1}\right)\psi(n)$$

《曰》《圖》《臣》《臣》 臣

Consequences

When $d \sim Cn^{\frac{1}{a+2}}$ with some constant C,

$$E\left(\#_{a,m}^{n}(d)\right) = O(1), \ \sqrt{d^{-a-2}n} + d^{-1} = O(1).$$

lf

$$d = o\left(n^{\frac{1}{a+2}}\right),\,$$

then whp

$$\#^n_{a,m}(d)\sim \frac{(a+1)\Gamma(ma+a+1)}{\Gamma(ma)}d^{-2-a}n$$

lf

$$d = \omega\left(n^{\frac{1}{a+2}}\right),\,$$

then whp $\#_{a,m}^n(d) = o(1)$; since $\#_{a,m}^n(d)$ is an integer number by definition, in this case whp

$$\#^n_{a,m}(d) = 0.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Image: A matched block of the second seco

ヨ▶ ▲ヨ▶ ヨ のへで

N = number of edges between farm and buyers

< 口 > < 同

æ

< ∃ >

 $X(d_1, d_2, n)$ – total number of edges linking a node with degree d_1 and a node with degree d_2 . When $d_1 = d_2$, we count every edge twice, but do not count loops.

The expected value for N given $d(A_i)$ and $d(B_j)$ is

$$N_0 = \sum_{i=1}^n \sum_{j=1}^m X(d(A_i), d(B_j), n).$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 🖌 🛪 프 🕨

 $X(d_1, d_2, n)$ – total number of edges linking a node with degree d_1 and a node with degree d_2 . When $d_1 = d_2$, we count every edge twice, but do not count loops.

The expected value for N given $d(A_i)$ and $d(B_j)$ is

$$N_0 = \sum_{i=1}^n \sum_{j=1}^m X(d(A_i), d(B_j), n).$$

• If $N \leq N_0$, this structure can be a natural formation.

프 🖌 🔺 프 🕨

 $X(d_1, d_2, n)$ – total number of edges linking a node with degree d_1 and a node with degree d_2 . When $d_1 = d_2$, we count every edge twice, but do not count loops.

The expected value for N given $d(A_i)$ and $d(B_j)$ is

$$N_0 = \sum_{i=1}^n \sum_{j=1}^m X(d(A_i), d(B_j), n).$$

- If $N \leq N_0$, this structure can be a natural formation.
- If $N > N_0$, this structure is probably a real link farm with some buyers.

Image: A matched block of the second seco

프 🖌 🔺 프 🕨

There exists a function $c_X(d_1, d_2)$ such that

$$EX(d_1, d_2, n) = c_X(d_1, d_2)n + O_{a,m}(1).$$

When both d_1 and d_2 grow, the asymptotic behaviour of c_X is

$$c_X(d_1, d_2) = ma(a+1) \frac{\Gamma(ma+a+1)}{\Gamma(ma)} \frac{(d_1+d_2)^{1-a}}{(d_1)^2 (d_2)^2} \cdot \left(1 + O_{a,m}\left(\frac{1}{d_1} + \frac{1}{d_2} + \frac{d_1d_2}{(d_1+d_2)^2}\right)\right).$$

< ∃ >

3

There exists a function $c_X(d_1, d_2)$ such that

$$EX(d_1, d_2, n) = c_X(d_1, d_2)n + O_{a,m}(1).$$

When both d_1 and d_2 grow, the asymptotic behaviour of c_X is

$$c_X(d_1, d_2) = ma(a+1) \frac{\Gamma(ma+a+1)}{\Gamma(ma)} \frac{(d_1+d_2)^{1-a}}{(d_1)^2(d_2)^2} \cdot \left(1 + O_{a,m}\left(\frac{1}{d_1} + \frac{1}{d_2} + \frac{d_1d_2}{(d_1+d_2)^2}\right)\right).$$

Theorem (Grechnikov)

Let c > 0. Then

$$P\left(|X(d_1, d_2, n) - EX(d_1, d_2, n)| \ge c(d_1 + d_2)\sqrt{mn}\right) \le 2\exp\left(-\frac{c^2}{8}\right).$$

In particular, if $c(n) \to \infty$ when $n \to \infty,$ then whp $|X-EX| < c(n)(d_1+d_2)\sqrt{mn}$

イロト イポト イヨト イヨト

Total number of edges between vertices with fixed degree

The formula for $c_X(d_1, d_2)$ does not give an asymptotic behaviour if

$$\frac{d_2}{d_1} \to c \neq 0.$$

The precise bounds show that the term

$$\frac{(d_1+d_2)^{1-a}}{d_1^2 d_2^2}$$

still gives the correct order of growth for c_X , but the coefficient can be different. And in fact, the coefficient differs.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─ のへで

Total number of edges between vertices with fixed degree

The formula for $c_X(d_1, d_2)$ does not give an asymptotic behaviour if

$$\frac{d_2}{d_1} \to c \neq 0.$$

The precise bounds show that the term

$$\frac{(d_1+d_2)^{1-a}}{d_1^2 d_2^2}$$

still gives the correct order of growth for c_X , but the coefficient can be different. And in fact, the coefficient differs.

Theorem (Grechnikov)

There exists a function $c_X(d_1, d_2)$ such that

$$EX(d_1, d_2, n) = c_X(d_1, d_2)n + O_{a,m}(1)$$

and

$$c_X(d_1, d_2) = \frac{\Gamma(d_1 + ma)\Gamma(d_2 + ma)\Gamma(d_1 + d_2 + 2ma + 3)}{\Gamma(d_1 + ma + 2)\Gamma(d_2 + ma + 2)\Gamma(d_1 + d_2 + 2ma + a + 2)} \cdot ma(a+1)\frac{\Gamma(ma+a+1)}{\Gamma(ma)} \left(1 + \theta(d_1, d_2)\frac{(d_1 + ma + 1)(d_2 + ma + 1)}{(d_1 + d_2 + 2ma + 1)(d_1 + d_2 + 2ma + 2)}\right)$$

where

$$-4 + \frac{2}{1+ma} \le \theta(d_1, d_2) \le a \frac{\Gamma(ma+1)\Gamma(2ma+a+3)}{\Gamma(2ma+2)\Gamma(ma+a+2)}$$

イロト 不得下 不足下 不足下

æ

If
$$d_1 + d_2 = 0$$
, then $X(d_1, d_2, n) = 0$. If $d_1 + d_2 \ge 1$, then

$$EX(d_1, d_2, n) = \frac{m(m+1)}{(d_1 + m)(d_1 + m + 1)(d_2 + m)(d_2 + m + 1)} \cdot \left(1 - \frac{C_{2m+2}^{m+1}C_{d_1+d_2}^{d_1}}{C_{d_1+d_2+2m+2}^{d_1+d_2}} \right) (2mn+1) - \frac{1}{2m(d_1 + m)(d_2 + m)C_{d_1+d_2+2m}^{d_1+m}} \left(\frac{(2i)!}{i!(i+1)!} \frac{m+1}{2m} + [i = m] \frac{(2m)!}{2(m-1)!^2} \right) - \frac{1}{2m(d_2 + m)(d_2 + m + 1)} - [d_2 = 0] \frac{(m-1)(m+1)}{2m(d_1 + m)(d_1 + m + 1)} + O_{m,d_1,d_2} \left(\frac{1}{n} \right).$$

э

Define 2-nd degree of vertex t as

$$d_2(t) = \#\{i, j : i \neq t, j \neq t, it \in E(G_1^{(n)}), ij \in E(G_1^{(n)})\}$$

Define by $X_n(k)$ number of vertices with 2-nd degree equal to k in $G_1^{(n)}$

A D > A B >
 A

₹ 9Q@

→ < Ξ →</p>

Define 2-nd degree of vertex t as

$$d_2(t) = \#\{i, j : i \neq t, j \neq t, it \in E(G_1^{(n)}), ij \in E(G_1^{(n)})\}$$

Define by $X_n(k)$ number of vertices with 2-nd degree equal to k in $G_1^{(n)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○

Define 2-nd degree of vertex t as

$$d_2(t) = \#\{i, j : i \neq t, j \neq t, it \in E(G_1^{(n)}), ij \in E(G_1^{(n)})\}$$

Define by $X_n(k)$ number of vertices with 2-nd degree equal to k in $G_1^{(n)}$

Theorem (Grechnikov–Ostroumova)

For any $k \geq 1$

$$E(X_n(k)) = \frac{4n}{k^2} \left(1 + O\left(\frac{k^2}{n}\right)\right) \left(1 + O\left(\frac{\log^2 k}{k}\right)\right).$$

Theorem (Ostroumova)

For any $\varepsilon>0$ there is such a function $\varphi(n)=o(n),$ that for any $1\leq k\leq n^{1/6-\varepsilon},$ whp we have

$$|X_n(k) - E(X_n(k))| \le \frac{\varphi(n)}{k^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem about triangles (Bollobás)

$$\mathbf{E}(\#(K_3, G_m^{(n)})) = (1 + o(1)) \,\frac{(m-1)m(m+1)}{48} \ln^3(n)$$

æ

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem about triangles (Bollobás)

$$\mathbf{E}(\#(K_3, G_m^{(n)})) = (1 + o(1)) \,\frac{(m-1)m(m+1)}{48} \ln^3(n)$$

Theorem about cycles (Bollobás)

$$\mathbf{E}(\#(\mathsf{I-cycles}, G_m^{(n)})) = (1 + o(1))C_{m,l}(\ln n)^l$$

where $C_{m,l}$ is a positive constant, $C_{m,l} = \Theta\left(m^l\right)$

문▶ ★ 문▶ · · 문

Theorem about triangles (Bollobás)

$$\mathbf{E}(\#(K_3, G_m^{(n)})) = (1 + o(1)) \,\frac{(m-1)m(m+1)}{48} \ln^3(n)$$

Theorem about cycles (Bollobás)

$$\mathbf{E}(\#(\mathsf{I-cycles}, G_m^{(n)})) = (1 + o(1))C_{m,l}(\ln n)^l$$

where $C_{m,l}$ is a positive constant, $C_{m,l} = \Theta\left(m^l\right)$

Theorem about pairs of adjacent edges (P_2) (Bollobás)

$$(1-\epsilon)\frac{m(m+1)}{2}n\ln n \le \#(P_2, G_m^{(n)}) \le (1+\epsilon)\frac{m(m+1)}{2}n\ln n$$
holds when as $n \to \infty$ where $\epsilon > 0$ be fixed

holds **whp** as $n \to \infty$ where $\epsilon > 0$ be fixed

・ロト ・四ト ・ヨト ・ ヨ

Theorem about arbitrary subgraph (Ryabchenko – Samosvat)

for arbitrary graph H

$$\mathbf{E}\left(\#\left(H, G_m^{(n)}\right)\right) = \Theta(1)\left(n^{\#(d_i=0)}(\sqrt{n})^{\#(d_i=1)}(\ln n)^{\#(d_i=2)}\right)m^{\left(\frac{\sum d_i}{2}\right)}$$

where d_i — is degree of node i in H

프 > 프

or

$$\mathbf{E}\left(\#\left(H,G_m^{(n)}\right)\right) = 0$$

 $\begin{array}{l} \alpha, \beta, \gamma, \delta_{\mathrm{in}}, \delta_{\mathrm{out}} - \mathrm{parameters,} \\ x_i(n) - \mathrm{a} \text{ number of vertices with indegree } i, \\ y_i(n) - \mathrm{a} \text{ number of vertices with outdegree } i. \\ \mathrm{Let} \\ \alpha + \beta \\ \beta + \gamma \end{array}$

$$c_1 = \frac{\alpha + \beta}{1 + \delta_{in}(\alpha + \gamma)}, c_2 = \frac{\beta + \gamma}{1 + \delta_{out}(\alpha + \gamma)}$$

イロト イポト イヨト イヨト

∃ 𝒫𝔅

 $\begin{array}{l} \alpha, \beta, \gamma, \delta_{\text{in}}, \delta_{\text{out}} - \text{parameters,} \\ x_i(n) - \text{a number of vertices with indegree } i, \\ y_i(n) - \text{a number of vertices with outdegree } i. \\ \text{Let} \\ \alpha + \beta \\ \alpha + \beta \\ \end{array}$

$$c_1 = \frac{\alpha + \beta}{1 + \delta_{in}(\alpha + \gamma)}, c_2 = \frac{\beta + \gamma}{1 + \delta_{out}(\alpha + \gamma)}.$$

Theorem

Let $i \ge 0$. There exists p_i, q_i such that whp $x_i(n) = p_i n + o(n), y_i(n) = q_i n + o(n)$. If $\alpha \delta_{in} + \gamma > 0$, $\gamma < 1$ then

$$p_i \sim C_{\text{in}} i^{-X_{\text{in}}}$$

as $i\to\infty,$ where $X_{\rm in}=1+\frac{1}{c_1},$ $C_{\rm in}$ — some positive constant. If $\gamma\delta_{\rm out}+\alpha>0$, $\alpha<1$ then

$$q_i \sim C_{\mathsf{out}} i^{-X} \mathsf{out}$$

as $i \to \infty$, where $X_{out} = 1 + \frac{1}{c_2}$, C_{out} — some positive constant.

물 문 문 물 문 문 문

• Consideration of all discussed properties in the directed model. We want to obtain the same asymptotic and concentration results.

A D > A B >
 A

∃ 900

→ < Ξ →</p>

- Consideration of all discussed properties in the directed model. We want to obtain the same asymptotic and concentration results.
- Studying of the distribution of second degrees in the Bollobás–Riordan model with $m\geq 2.$

프 🖌 🛪 프 🛌

< □ > < 🗇 >

E nac

- Consideration of all discussed properties in the directed model. We want to obtain the same asymptotic and concentration results.
- Studying of the distribution of second degrees in the Bollobás–Riordan model with $m\geq 2.$
- Consideration of the second degree distribution in all discussed models.

프 🖌 🔺 프 🕨

4 D b 4 A b